
ICT394 Business Intelligence

Application Development

Dr Danny Toohey

ICT285 Databases

Dr Danny Toohey

Topic 05: Conceptual database design

About this topic

This is the first of three topics that deal specifically with database design as a

process. Database design can be divided into three basic stages: conceptual, logical

and physical.

The conceptual design phase (this topic) constructs a model of the enterprise’s

data needs independent of any database model. This ensures firstly that design can

progress without the need for compromise due to limitations in the data model,

and secondly that the data model most appropriate to the particular enterprise’s

requirements can be selected when the requirements are more fully known.

Topic Learning Outcomes

After completing this topic you should be able to:
• Explain where conceptual data modelling fits in the database development life

cycle and SDLC
• Describe the features of the Entity-Relationship model: entities, attributes,

relationships, cardinality, weak entities
• Describe the features of the Extended Entity-Relationship model: supertypes

and subtypes
• Interpret different types of Entity-Relationship diagram notation
• Draw an Entity-Relationship Diagram from a description
• Use Entity-Relationship modelling as a means of eliciting and checking user

requirements for a system
• Check your Entity-Relationship Diagram for correctness
• Avoid typical ‘traps’ of poor ER modelling practice

Resources for this topic

READING

• Text, Chapter 5 “Data Modelling with the Entity-Relationship Model"

• Chen, P.P.S., 1976, The entity-relationship model-toward a unified view of data,
ACM Transactions on Database Systems, 1(1), pp. 3-36. On My Unit Readings

(a classic paper, but not examinable)

Kroenke, D.M., and Auer, D.J., 2016, Database Processing: Fundamentals, Design
and Implementation, 14th Edition, Pearson, Boston.

Lab 05

In Lab 05 you will practice creating several ERDs that demonstrate
some of the typical patterns found in data modelling. We will use
Microsoft Visio for this. Visio is a drawing tool that can be used to
create many different types of diagrams, including ERDs. It is a useful
tool for ER modelling as it not only draws the diagram, but allows you
to create properties and constraints that apply to it. It therefore helps
move us from conceptual design (the ERD) towards logical design (a set
of normalised tables).

Topic Outline

1. Where conceptual modelling fits into database design

2. Entity-relationship modelling
• Entities and attributes
• Relationships
• Weak entities and ID-dependent entities
• Generalisation/specialisation
• Different notations

3. How to construct an ERD

4. How to check your ERD for correctness (separate document)

Topic 05: Part 01
Where conceptual modelling fits in database

design

Database Design

Process of creating a design for a database that will support the
enterprise’s mission statement and mission objectives for the required
database system

Three phases of database design:

- Conceptual database design

- Logical database design

- Physical database design

Conceptual Database Design (this topic)

• Process of constructing a model of the data used in an enterprise,
independent of all physical considerations

• Data model is built using the information in users’ requirements
specification.

• Conceptual data model is source of information for logical design
phase.

• Conceptual data models can be drawn using Entity-Relationship
diagrams, UML, or other modelling techniques

Logical and Physical Database Design
(looking ahead to topics 6,7)

Logical design
• Process of constructing a model of the data used in an enterprise based on a specific data model (e.g.

relational), but independent of a particular DBMS and other physical considerations.

• Conceptual data model is refined and mapped on to a logical data model.

Physical design
• Process of producing a description of the database implementation in secondary storage.

• Describes base relations, file organizations, and indexes used to achieve efficient access to data. Also
describes any associated integrity constraints and security measures.

• Tailored to a specific DBMS system.

Data Modelling

• Data modelling is used to represent what data is of interest to an organisation -
the main ‘things’ of interest, their characteristics, and how they are related to
one another

• Together with process models, which represent the activities that go on in an
organisation, data models represent the essential (implementation-
independent) view of what a system does

• Although the data model is only a part of the overall system specification, it has
a big impact on the overall usefulness and flexibility of the system

• Data models can be drawn at various levels of detail:

• High level or enterprise model, showing all the data of interest

• Models for particular applications, which will form the basis for the database design

Why bother with data models?

A data model ensures we understand:

• each user’s perspective of the data

• nature of the data itself, independent of its physical representations

• use of data across user views

Main purposes of data modeling include:

• to assist in understanding the meaning (semantics) of the data

• to facilitate communication about the information requirements

Topic 05: Part 02
Entity Relationship Modelling

Entity-Relationship Modelling

One of the most commonly used techniques for conceptual data
modelling
• Entity-Relationship Diagrams (ERDs) are the diagrams produced

First developed by Chen in the early 1970s
• ‘Grew up with’ the relational model, so a very close match to it and shares many concepts

• Many variations in diagramming techniques and terminology – but the
modelling process itself is essentially the same

• The readings illustrate both the original ‘Chen’ notation and the common
‘crow’s feet’ notation

Other types/versions of ER models

• Extended E-R model
- …extensions to the Chen model for subtyping

• Information Engineering (IE)
- by James Martin (1990); it uses “crow’s foot” notation

• IDEF1X
- a national standard developed by the National Institute of Standards and

Technology (see online appendix E)

• Unified Modeling Language (UML)
- by the Object Management Group

- developed to support object-oriented methodologies (see online appendix D)

ER Diagram: Chen notation (without
attributes)

BRANCH

PROPERTY_FOR

_RENT

STAFF

OWNER

RENTER

VIEWING

LEASE_

AGREEMENT

registers

has

offers

owns

holds

attends
Associate

d with

N1

N

N

N

N

N

N

takes
N

N

11

1

1

1

1

1

NEXT OF KIN
N1

has

Image after Connolly, T. & Begg, C. (1996). Database Systems: A Practical Approach to Design, Implementation
and Management. Addison Wesley

ER Diagram: Crow’s Feet

BRANCH

PROPERTY_FOR

_RENT

STAFF

OWNER

RENTER

VIEWING

LEASE_

AGREEMENT

NEXT OF KIN

What E-R Modelling is…

• A concise way of representing the data requirements of the
problem at hand

• A way of finding out what you know and don’t know about that
problem

• A means of discussing the problem domain with the client, during
requirements determination

• A means of producing a diagram that can be implemented more or
less directly, especially as a relational database

• Straightforward to learn, with a fairly small set of rules and syntax

• One of the most useful skills that you can have!

And what E-R Modelling is NOT

• .. It is NOT something you do after you’ve built the database,

because you need to produce documentation

• .. It is NOT something that you do because you have been told to

create an ERD, but which you don’t look at again for the rest of the

SDLC

• .. It is NOT something in which the occasional inaccuracy or

inconsistency doesn’t matter, because it’s “just” a diagram

Entity-Relationship Modelling – entities and
attributes

Entities and attributes

• An entity is a something of relevance to the system being modelled

– something you are interested in storing information about

• It has existence – either physical or abstract

• It has properties – characteristics that describe it, which we call

attributes

• It has many individual instances that make it up

• Each instance can be identified uniquely

Entities and attributes - example

• EMPLOYEE could be an entity in a data model for a Human-
Resources system

• EMPLOYEE would represent the set of all individual employees in
the system

• Each EMPLOYEE could be described by ATTRIBUTES such as name,
address, phone, etc

Drawing entities and attributes

• Entities are drawn with a rectangle and named with a simple, singular
noun.

- e.g. EMPLOYEE, NOT EMPLOYEES
- The name is always singular as it reduces confusion when determining

relationship cardinality (later)

• Attributes are shown on the diagram in some notations, not in
others (but if not shown, they need to be documented
elsewhere)

CUSTOMER ORDER

Indentifier attributes

• There is always one attribute, or a combination of attributes, whose
value is unique and which we can use to identify the individual
entity instance

• This is exactly the same concept as you have met in creating and
normalising relations

• In our example EmployeeID is unique and is called the identifier of
the entity EMPLOYEE

• Strictly, entities have identifiers, tables have primary keys – though
we often refer to the PK of an entity

• Identifiers can be COMPOSITE; i.e., made up of more than one
attribute

Entities, tables, relationships and foreign
keys

• The principal difference between an entity and a table (relation) is
that you can express a relationship between entities without using
foreign keys – the line shows the relationship

• This makes it easier to work with entities in the early design process
where the very existence of entities and the relationships between
them is uncertain

• However, the tables you create from the entities later will definitely
have foreign keys to represent the relationships in the ERD

Primary keys and foreign keys in ERDs

• There are different “schools of thought” on whether FKs should be
included in an ERD, or if they should be left until the logical design
stage

• If the ERD is going to be turned into a relational database (which it
usually is) then including PKs and FKs is a good way of checking your
conceptual model before creating the schema

• In this unit you WILL include PKs and FKs in the fully-attributed ERDs
you create for assignments

• Some software (e.g. Visio 2010, though not 2016) will insert the FKs
automatically where there is a corresponding PK in a related entity

26

Entities and attributes

This notation is the one used in Visio 2010, which shows the
attributes, primary keys and foreign keys within the entity symbol
- not all notations would do this

Slide 27

Entity types and entity instances

- Formally, what we draw in an ERD is the entity type (or entity set)
EMPLOYEE

- ‘Entities’ are, properly speaking, the individual instances

Fred, Ann

- However, the term ‘entity’ is so widely used for entity type that we
shall continue to use it that way here, and when we need to refer
to the individual instances of the entity we will call them entity
instances

Entity-Relationship Modelling –relationships

Relationships

• Entities can be associated with one another in relationships

• A relationship can involve one, two (most usually), or more entities

• The way in which entities are associated with each other is what
represents the meaning of the data stored, how it is related to other
data:

- A CUSTOMER places an ORDER

- A STUDENT enrols in a UNIT OFFERING

- An EMPLOYEE works in a DEPARTMENT

Drawing relationships

• A relationship between two entities is shown as a line linking the
entities

• Again, there are different conventions for how relationships are
drawn

CUSTOMER ORDER

CUSTOMER ORDERplaces
N1

Implementing relationships in database
tables: looking ahead

• Looking ahead: the relationships we show on the ERD are
eventually implemented as links between tables (primary key –
foreign key), so that related data can be accessed

• So it’s vital that the relationships are defined correctly for the
particular system, otherwise you won’t be able to use queries
get at the data you need

View Ridge Gallery ERD

33
Image from Kroenke, D.M., and Auer, D.J., 2016, Database Processing: Fundamentals,
Design and Implementation, 14th Edition, Pearson, Boston.

How many?

More information about the way entities are related can be gained
from considering how many of one entity instance are associated with
how many of the other

- e.g. At Murdoch, each SCHOOL can have many STAFF members in it.
However, each STAFF member belongs to only one SCHOOL

- Thus, the relationship between SCHOOL and STAFF is
one-to-many:

SCHOOL STAFF

Occurrence diagrams
• ER diagrams show only the collective class of entities (STAFF), not the

individual occurrences of the entities (Danny, Val, Tanya)

• However, you can also draw occurrence diagrams (also called semantic net
diagrams or instance diagrams) that show individual entity instances.

• Semantic net diagrams can be very useful in clarifying exactly what is meant
by the cardinality of a relationship – how many instances of one entity are
related to an instance of another

STAFF

S1

S2

S3

Val

Danny

Tanya

Example – Occurrence diagram

Sc1

Sc2

Sc3

S1

S2

S3

STAFFSCHOOL

Maximum Cardinality

• The maximum cardinality of a relationship describes the maximum
number of occurrences of one entity that are associated with a single
occurrence of the other

• This is also known in some texts simply as cardinality

Maximum Cardinality

Unit Offering

Unit1 Offering1

Unit2

Unit3

Offering2

Offering3

Offering4

• The occurrence diagram shows that one
instance of a unit can be related to
zero, one or many instances of an
offering.

• Thus the maximum cardinality of this
relationship is many

• We can also see that one offering can
be associated with one and only one
unit.

• Thus the maximum cardinality of this
relationship is one

Minimum Cardinality (optionality;
participation)

The minimum cardinality of a relationship describes the minimum

number of occurrences of one entity that are associated with a single

occurrence of the other

- This is also known in some texts as optionality, ordinality, or

participation

- Minimum cardinality of 0 means an optional relationship

- Minimum cardinality of 1 means a mandatory relationship

Minimum Cardinality

Unit Offering

Unit1 Offering1

Unit2

Unit3

Offering2

Offering3

Offering4

• This occurrence diagram shows that one
instance of a UNIT can be related to
zero, one or many instances of an
OFFERING.

• Thus the minimum cardinality of this
relationship is zero (i.e. it is
OPTIONAL)

• We can also see that one OFFERING
can be associated with one and only
one UNIT.

• Thus the minimum cardinality of this
relationship is one (i.e. it is
MANDATORY)

Representing Cardinality: Crow’s Feet

Representing Cardinality: Chen

Double line means total

participation, or

mandatory relationship

Single line means

partial participation, or

optional relationship

N means maximum

cardinality is ‘many’
1 means maximum

cardinality is ‘one’

COURSE OFFERINGhas
N1

Types of Cardinality

The basic types of cardinality are:
• One-to-one (1:1)

• One-to-many (1:N)

• Many-to-many (M:N)

1:1 relationship

BA

A1

A2

A3

B1

B2

B3

Mandatory relationship on both sides:

Optional relationship on both sides:

BA

A1

A2

A3

B1

B2

B3

1:N relationship

Mandatory relationship on both sides:

Optional relationship on both sides:
A1

A2

A3

B1

B2

B3

B4

BA

A1

A2

B1

B2

B3

BA

M:N relationship

Mandatory relationship on both sides:

Optional relationship on both sides:

A1

A2

A3

B1

B2

B3

BA

BA

A1

A2

B1

B2

Reading an ERD

Based on the ERD above, we can say that:

• An Office has zero or one Faculty working in it

• A member of Faculty works in one and only one Office

• A member of Faculty team teaches zero or many
Offerings

• An Offering is taught by zero or many Faculty

OFICE FACULTY OFFERING

Example

Draw:
• An occurrence diagram

• An entity-relationship diagram

for the following description:

“A car may be driven by many drivers during the week, or by
none. A driver may drive many cars, and always drives at least
one”

Example

Draw an ERD for the following description. Explain any assumptions
you need to make where there is insufficient information.

“A cricket team has several players, but a player plays on only
one team. A team has one manager”

Many-to-many relationships

• M:N relationships are sometimes called non-specific relationships
• They can always be resolved into pairs of 1:N relationships, and

this should be done during modelling, before the ERD is mapped
to relational tables

- because we can’t implement a M:N relationship directly as tables

• Resolving the relationship gives more precision to the model,
and may reveal more attributes/ relationships than were
previously apparent

Resolving an M:N relationship using an
associative entity

Create another entity to represent the combination of the participating
entities:

STUDENT OFFERINGENROLMENT

STUDENT OFFERING

• This is known as an associative entity (also called an
association or intersection entity)

• The identifier of the associative entity is the combination
of the identifiers from the related entities

M:N Relationships with attributes

StdSSN

StdName

Student
OfferNo

OffLocation

OffTime

Offering

EnrGrade

In a M:N relationship there may be attributes associated
with the combination of both entities

- e.g. a grade is associated with a student enrolled in an offering
of a unit

The diagram is not normally left like this, though

Improved precision

StdSSN

StdName

Student
OfferNo

OffLocation

OffTime

Offering

EnrGrade

Enrollment

AttDate

Present

Attendance

Replacing the M:N with two relationships and an
associative entity can improve precision of the model:

• The association may have attributes (e.g. Grade for the
Student:Offering relationship)

• The association may need to be related to other entities

Example…

AuthNo

AuthName

Author

ISBN

Title

Book

AuthOrder

b) Writes relationship

Writes

How would this be drawn using an
associative (intersection) entity?

Other types of relationships

Other types of relationships you may meet include:
• More than one relationship between the same entities

• Recursive relationships

• Multi-way relationships

More than one relationship between the
same entities

This may be necessary to represent the complete meaning of the
system:

- PERSON works on PROJECT
PERSON leads PROJECT

- STUDENT borrows LIBRARY BOOK

- STUDENT recalls LIBRARY BOOK

Model with separate relationships, as they may have different
maximum and minimum cardinalities

PERSON PROJECT

leads

works on

Recursive Relationships

• A recursive relationship occurs when an entity has a relationship with
itself

• Also known as unary or self-referencing relationships

Examples:

• A member of faculty may supervise other members of faculty and, in
turn be supervised by other members of faculty

• A unit may be a prerequisite for other units

Example of a recursive relationship

Faculty1

Faculty2 Faculty3

Faculty4 Faculty5

IS300

IS320

IS480 IS460

IS461

(a) Supervises (b) PreReqTo

(drawn schematically, not an ERD):

Drawing recursive relationships

FacSSN

FacName

Faculty

a) manager-subordinate b) unit prerequisites

UnitNo

UnitTitle

Unit

The ERD shows a relationship line drawn from
one side of the entity to the other, using the
usual cardinality and optionality symbols

Multi Way (M-Way) Relationships

Relationship between more than two entities

• Binary – two entities (the usual)

• Ternary – three entities

• Quarternary – four entities

• N-ary – many entities

Generally represented as a series of binary relationships with an
associative entity to represent the relationship

M-Way Relationships

PartNo

PartName

 Part

SuppNo

SuppName

Supplier

Associative

entity type

ProjNo

ProjName

Project

 Uses

Entity-Relationship Modelling –Weak entities

Weak entities

• Weak entities are those whose instances cannot exist without an
instance of another entity:

- a weak entity is existence-dependent on the owner entity

In the example below, a room cannot have an existence separate
from the building it is in

63

BUILDING
ROOM

BuildingIDPK

BuildingName

Location

RoomNoPK

Capacity

Weak entities in ERDs

• Usually have a different symbol for the entity

• Always have a mandatory relationship with their owner entity

• Usually (not always) have a composite primary key made up in part
of the primary key of the owner entity – if it does it is known as an
ID–dependent entity

LINE-ITEMORDER

Examples of weak entities

• Typically used to model collections of things within the owner entity
- An Order and its Line-Items – a line item doesn’t make sense except in

the context of an order

- Phone calls within an itemised telephone bill

- Fault reporting on an item of machinery

- Legs within an airline route

• Modelling history - attribute variation over time
- Person and their weights on different dates

• Also used where the entity has no meaning within the database
without its owner entity

- Staff and their Next-of-Kin

Entity-Relationship Modelling –
Generalisation/Specialisation and Subtypes

Generalisation/specialisation

• Additional concepts were soon incorporated into the original ER
model and called the Extended Entity-Relationship (EER) model.

• The most useful additional data modelling concept of the Extended
ER (EER) model is called generalisation/specialisation (subtyping)

• Based on the idea of classification and inheritance

• If you did ICT284, it’s very similar to subclasses in UML

• Be aware that there are lots of different diagramming conventions
for generalisation/ specialisation!

Classification

The process of ‘grouping’ objects based on some similarities:
- Biological taxonomies, such as Plants/Animals/Fungi

- Administrative classifications such as
Students/Faculty/Administrative Staff

Classification is what allows us to model inheritance/generalisation for
our database

- Can model entities that share common characteristics, but
which also have differences

Subtypes and supertypes

An entity in a subtype represents same ‘real world’ object as in supertype, and
may possess subtype specific attributes, as well as those associated with the
supertype

• Subtypes inherit attributes of supertypes (direct and indirect)

• e.g. the SalaryEmployee subtype inherits the EmpName and EmpHireDate
attributes

AllStaff relation holding details of all
staff

Image from Connolly, T. & Begg, C. (2002). Database Systems: A Practical Approach to Design, Implementation
and Management. 3rd Edition. Addison Wesley

Constraints on Specialisation / Generalisation

Participation constraint
- Determines whether every member in supertype must participate as a member of

a subtype.

- May be mandatory or optional:

- mandatory: every instance of a supertype must also be an instance in the
subtypes

- optional: there may be instances in the supertype that are not in the subtype

Exclusive or inclusive constraint
- Describes the relationship between members of the subtypes and indicates

whether member of a supertype can be a member of one, or more than one,
subtype.

- May be exclusive (no entity instance in common – or) or inclusive (overlapping
– and) (also called disjoint and nondisjoint)

Example

• The Exclusive constraint below means that if a security is a
stock it cannot also be a bond

• The mandatory participation constraint means that every
security must be either a stock or a bond

in Visio 2010
mandatory
participation is
shown with a
double line

The exclusive
constraint can
be shown with
an X or d in the
circleX

Different types of Entity-Relationship diagram
notation: review

ER Diagram: Chen notation (without
attributes)

BRANCH

PROPERTY_FOR

_RENT

STAFF

OWNER

RENTER

VIEWING

LEASE_

AGREEMENT

registers

has

offers

owns

holds

attends
Associate

d with

N1

N

N

N

N

N

N

takes
N

N

11

1

1

1

1

1

NEXT OF KIN
N1

has

Image after Connolly, T. & Begg, C. (1996). Database Systems: A Practical Approach to Design, Implementation
and Management. Addison Wesley

Chen Notation

COPIED FROM:http://data-e-education.com/images/ERM_18_E_R_Model_Chens_Notation_01.png

ER Diagram: Crow’s Feet

BRANCH

PROPERTY_FOR

_RENT

STAFF

OWNER

RENTER

VIEWING

LEASE_

AGREEMENT

NEXT OF KIN

UML class diagram (not an ERD but
similar features)

More in ICT284!

So which should you use??

All notations have their good and bad points

• Chen allows very precise modelling of attributes, but is very bulky to draw

• Crow’s feet are concise and simple, but you need to document the attributes
separately as you go

• Fully-attributed ERDs can be difficult to read, but provide a very clear mapping to
the logical design and implementation

When drawing your own ERDs, use any one that you are comfortable with, so long as:

• You don’t make up your own!

• You use the same convention all the way through the ERD

• You include a legend with the diagram to make it quite clear what the symbols
represent

In an assignment or the exam, use the one that’s asked for

You should be able to READ any of the notations

Topic 05: Part 03
How to construct an ERD

How to construct an ERD

• Discover entities

- Entities must be about only one thing

- Methods such as ‘noun technique’ (ICT284)

• Construct context (high level) data model

- Show entities and relationship cardinality

• Identify the keys of each entity

- Show primary key

• Create fully attributed data model

- Add attributes.

- Attributes must relate only to that entity

• Improve data model using normalization

This is generally a useful approach to follow, although many notations don’t support the inclusion of attributes
within the ERD itself – however, they should always be documented

How to construct an ERD: an iterative
process!

• Identify entities, attributes, relationships
• In a written or verbal description, nouns are often entities, verbs give clues as to

relationships

• Other sources are forms, reports, existing databases

• Sketch the ERD
• Normalise the ERD

• Remove multivalued attributes, resolve M:N relationships

• Check for ‘syntax’ errors

• Check that the diagram is complete

• Do further checks for correctness, including verifying
assumptions with client

Using Entity-Relationship modelling in
Requirements Analysis

• The ultimate aim of drawing an ERD is to create a representation or
model of the system.

• However, it’s also a useful way of exploring ideas as well as
documenting them - finding out what you know and don’t know
about the system

• Whenever you draft a diagram, note on it:

- What you are sure about

- What you are unsure about

- What questions you need to ask to clarify the parts you
aren’t sure about

Exercise: Rent-a-Van

Draw an ERD to represent the Rent-a-Van data requirements:

“Rent-a-Van retails minivans for a number of manufacturers. Each manufacturer

offers several models of its minivan (e.g., SE, LE, GT). Each model comes with a

standard set of equipment (e.g., the Acme SE comes with wheels, seats, and an

engine)

Minivans can have a variety of additional equipment or accessories (radio, air

conditioning, automatic transmission, airbag, etc.), but not all accessories are

available for all minivans (e.g., not all manufacturers offer a driver’s side airbag).

Some sets of accessories are sold as packages (e.g., the luxury package might

include stereo, six speakers, cocktail bar, and twin overhead fluffy dice).”

Patterns in forms, reports and E-R models

Patterns

• Because a lot of business processes and transactions do much the same thing,
you will find similarities between different organisational data models, although
the particular names of the entities may differ

• e.g. representing a customer order for particular items is usually likely to
have the form:

Customer 1–N Order 1– N OrderItem N-1 Item

• Part of becoming an expert data modeller is about recognising typical patterns
and knowing how to work with them

• Patterns can often be recognised from an organisation’s forms and reports

• The textbook illustrates several of these: read through the examples yourself to
get an idea of some typical patterns (not examinable – just useful!)

Data model patterns described in Kroenke

• Strong Entity Patterns (1:1, 1:N, M:N)

• ID-Dependent Relationships
• The Association Pattern

• The Multivalued Attribute Pattern

• The Archetype/Instance Pattern

• Mixed Identifying and NonIdentifying Patterns

• The Line-Item Pattern

• The For-Use-By Pattern

• Recursive Patterns

• Patterns based on reports

Topic 05: Part 04
How to check your ERD for correctness

How do you know if you’ve got it
right?

Even though it’s a diagram, you can check an ERD for errors in the
same sort of way as you do programs

• Syntax errors
- Errors in the ‘grammar’ of the technique – using the notation

incorrectly

• Logic errors
- Errors that mean the system isn’t represented correctly – business

rules are not represented

• Run-time errors
- Errors that mean the system won’t perform correctly in practice and

over time

Errors in the diagramming notation:
Check -

• Entities named correctly?
- Must have singular names

- Must have unique names

- Must represent types of things, not individual instances

• Identifiers (primary keys) indicated?
(if you are using a notation that shows attributes)

• Relationships have complete cardinality/optionality indicated at
both ends?

• Relationships are only between entities – not between other
relationships?

Errors that mean the system isn’t
represented correctly according to the
business rules: Check -

• Are your entities really entities?

• Are your attributes really attributes?

• Are your relationships are really relationships?

• Are the correct entities related?

• Is the cardinality of relationships correct?

• Try to get into the habit of recognising typical patterns of
entities and relationships
• These include both traps to avoid, and typical business usage patterns –

this is largely a matter of experience

•-- we’ll discuss all of these next

Are your entities really
entities?
1. Modelling the system as an
entity
- Recognised by the entity being named for the system, and

problems in working out what relationships it has

- Often arises because of a literal reading of a description: “Dream
Home Real Estate has several branches…”

- It is wrong because an entity must have the potential for many
individual instances, and ‘the system’ is only one instance

BRANCH
DREAM HOME

REAL ESTATE

Ask yourself: are there any other real estate agencies to be
modelled in this system? If so, keep it as an entity (called
AGENCY), if not, remove it

Are your entities really entities?
2. Modelling reports as entities

• Clue: an entity called ‘Weekly Report’ or similar

• Again, follows from a literal reading of the problem
description

- This is wrong because reports are an output of the
database - the result of querying on the database
contents (often from many individual tables)

PROPERTY

PROPERTY

AVAILABLE

REPORT

To fix: Remove the ‘report’ entity, and check that all the
information you require for the report can be found from the
other entities in the data model

Are your entities really entities?
3. Modelling attributes as entities

• If you find you can’t define any attributes of an entity, consider
whether it is really an entity in itself, or just an attribute of the
related entity

• Make it an attribute if:

• It only takes one value for the entity instance, and that value is likely to
be specific to the particular instance

• Consider keeping it as a separate entity if:

• It can be multivalued for the entity (since multivalued attributes not
permitted in RM)

• The values it can take would be reusable by other instances of the related
entity

Example

DATE OF BIRTHSTUDENT

Student has date of birth

- Would not model as an entity as there is only ever
one value for the student

The fact that many students could share a DOB is not likely
to be relevant - date of birth is not of interest in its own
right in this system

Another example…

Student has Address

- Would possibly model StudentAddress as a weak entity if multiple
addresses were to be stored,

•e.g. semester address, mailing address, permanent address

STUDENT-

ADDRESS
STUDENT ?

Another example

Car has Colour – entity or attribute?

• Potentially a separate entity COLOUR if multiple colours possible for that
model, and using a standard colour set that could apply to many models

• In this example, Colour could be of interest in its own right (and you
would probably find extra attributes, specific to car manufacture, such as
code or batch number)

CAR-COLOURCAR COLOUR

Are your entities really entities?
4. Entities that aren’t related to any other
entities

• This is usually a sign that the entity doesn’t belong in this
system

- Check for the other errors first – maybe you have
represented the system itself, or a report

- Occasionally you would want a standalone entity to provide a
set of lookup values, but this situation is very unlikely in any
data model you will be asked to draw in ICT285!

Are your entities really entities?
5. Entities that are the same thing, but in a
different state

A ‘Prospect’ eventually becomes a ‘Student’ – should this be
modelled as:

• Two related entities?

• An entity Student, with attribute ‘State’ which can take the
value Prospective?

• A generalisation (supertype) entity Student, with subtypes
Enrolled and Prospective?

•Ask – are there different attributes? Are there different
relationships?

Are your attributes really
attributes?
1. Attributes that should be
entities

- A complex or multivalued attribute often
becomes a related entity instead when the
entity is fully normalised

ATHLETE

AthleteName

AthleteAddress

….

….

Sponsor (name,

address, city)

SPONSOR

SponsorName

SponsorAddress

SponsorCity

…..

…..

ATHLETE

AthleteName

AthleteAddress

….

….

(Primary keys and foreign keys not shown)

Are your attributes really
attributes?
2. Mistaking values for attributes

•This can easily be done
when using printed forms as
the basis for the data model
– can be tempting to use
them too literally:

Payment method:

Paypal Credit Cash

X

• Separate attributes PayPal, Credit, Cash, each with Yes/No
values??

- If another payment method is accepted, need to redo
database design – so not a good solution

• Attribute PaymentMethod, with possible values PayPal,
Credit, Cash?

- Extendible to another payment method simply by
adding a new value to the list of valid ones for that
field – more flexible solution

Are your relationships really
relationships?

Check that you haven’t modelled process instead of relationship

• In the data model, it doesn’t necessarily matter how
something comes about, just what the result is

• e.g. Secretary updates Property table – should this indicate a
relationship between Secretary and Property entities??
• If we need to keep track of who updates what, for auditing purposes,

then YES

• Otherwise NO

Are the correct entities related?

• Getting the correct entities, but relating them incorrectly, is the
cause of some typical ‘traps’ which we shall consider shortly

• Generally, these traps arise from representing indirect
relationships rather than the most direct

Is the cardinality of relationships
correct?

Check using occurrence diagrams to be sure you understand
what the cardinality represents, and make sure this matches the
business rules of the system

• Remember how to read cardinality: it refers to instances of
the entity, not the set
- i.e., ‘how many instances of entity B are related to ONE instance of

entity A?’

• Make sure the cardinality is correct for the entire lifetime of
the database

Checking an ERD using Occurrence
Diagrams

Unit Offering

Unit1 Offering1

Unit2

Unit3

Offering2

Offering3

Offering4

(What is the corresponding ERD?)

Get into the habit of recognising typical
patterns of entities and relationships

These include:

• Traps to avoid (next section)

• Typical ER constructions:
- Expanding a M:N relationship to two 1:N

- Use of a weak entity to represent history

• Typical business usage patterns

Proficiency is largely a matter of experience
and practice!

Errors that mean the system won’t
function correctly
1. Forgetting about the timescale of the
database

A typical error is to forget about time so that you end up
with an ERD which will work for a single occasion, but not
repeated use

• Ask yourself: does this ERD model the database for
the length of time it will last?

• Usually the solution is to add another entity to represent multiple
occasions of something (see example on next slide)

Example: thinking of the time
dimension

ENROLSSTUDENT UNIT

ENROLSSTUDENT UNITUNIT-OFFERING

• OK for this semester… but what happens if you fail
ICT285 and need to come back next semester?

• This is better, can now have multiple enrolments in a ‘unit-
offering’

• Still need to ask: would this distinguish different years
adequately for the system?

Errors that mean the system won’t function
correctly
2. Being inflexible

Not really an error, but more like poor practice – you should
always design a system to be flexible:

• Prepare for multiple occurrences of things that are only
‘supposed’ to happen once

• Be able to handle a larger set of possible values than the
ones given

• Allow for the possibility of different behaviour by using
subtypes

• Keep concepts as distinct as possible through
normalisation
• it’s easy to combine entities using queries, but impossible to split up

something that is a whole

Classic ‘Traps’ – errors to
avoid

Fan Trap
Chasm Trap
Incomplete Circular Relationships

109

Fan Trap

FACULTYLECTURER SCHOOL

Which School does Lecturer 3 work in??

L1

L2

L3

D1

D2

D3

S1

S2

S3

Fan Trap explanation

There is potential for a Fan Trap whenever there is a
many-to-one then one-to-many relationship

• Example - At Murdoch, each is in a particular
Faculty, and a Faculty has many Schools. A Faculty
also has many lecturers

• We can’t find out from the ERD on the previous slide
what School which lecturer works in - yet we know
(from our knowledge of Murdoch) that lecturers are
associated with particular Schools

• Problem arose because we drew a derived relationship
(Faculty has Lecturer) instead of the direct one, School has
Lecturer

•Solution: Redraw using the direct relationship

Fan Trap: Solution

Now we can see that Lecturer 3 works in School 3

SCHOOLFACULTY LECTURER

L1

L2

L3

D1

D2

D3

S1

S2

S3

Fan Trap – another example

OFFICEEMPLOYEE PHONE

•Is this a fan trap??

• Suppose we have an open plan office,
with no connection between phone and
employee - any employee can use any
phone in the office

• Then there would be no problem with this
representation

Checking for the Fan Trap

Not every N:1 1:N pattern is a fan trap – but many are, so look
out for it

• The fan trap also applies (potentially) if there is a many-to-
many relationship followed by a one-to-many or a many to
many

• (because the M:N relationship can be resolved into two 1:N
relationships with a new associative or 'intersection' entity)

Chasm Trap

Which branch manages Property P3?

P1

P2

P3

B1

B2

B3

S1

S2

S3

STAFFBRANCH PROPERTY

Chasm Trap - explanation

The Chasm Trap arises when there are optional relationships in a
pathway between related entities, so that for some entity
instances it is impossible to get at the relationship

• In the example, not all properties at a branch are assigned to
staff – so it is impossible to tell which branch these
properties are registered at

• Solution: add in the direct relationship

Chasm Trap

Now we can see that Property 3 is managed by
Branch 2

(always check that both sets of relationships are actually needed)

P1

P2

P3

B1

B2

B3

S1

S2

S3

STAFFBRANCH PROPERTY

B1

B2

B3

Checking for the Chasm Trap

Check any pathway of related entities that includes optional
relationships for potential chasm traps

• Again, the presence of optional relationships may not
indicate a problem, but it is always worth checking

• Solutions may include adding another relationship, or
restructuring the existing ones

Incomplete circular
relationships

HABITAT

SPECIES LOCATION

We have many-to-many relationships everywhere… but
can we find out if a particular species is found in a
particular habitat and location?

Incomplete circular relationships –
explanation

Incomplete circular relationships can arise when
you need to represent a combination of more than
two entities

• Often a clue is a combination of several many-
to-many relationships, which don’t solve the
problem even when expanded

• Solution is to create another entity, to
deal with the combination directly

Incomplete circular
relationships: Solution

HABITAT

SPECIES LOCATIONOCCURRENCE

Create a central entity Occurrence to represent the combination
of Species, Habitat and Location

Topic 05: Part 05
Conclusion

A final word on entity relationship
diagrams….

ERDs are a valuable modelling tool for database design:

• Specify the meaning of a system

• Explain the designer’s understanding of the system to the client

• Basis for logical database design (next topic)

Try to develop a consistent way of drawing ERDs

• Make use of legends wherever required (including assignments and
exams!) to assist others in understanding your diagrams

• Learn to use a drawing tool (such as Visio) well

• Learn from your mistakes and learn from your successes – this is
the way you will build up expertise

Learning outcomes revisited

After completing this topic you should be able to:
• Explain where conceptual data modelling fits in the database development life cycle and

SDLC
• Describe the features of the Entity-Relationship model: entities, attributes, relationships,

cardinality, weak entities
• Describe the features of the Extended Entity-Relationship model: supertypes and

subtypes
• Interpret different types of Entity-Relationship diagram notation
• Draw an Entity-Relationship Diagram from a description
• Use Entity-Relationship modelling as a means of eliciting and checking user requirements

for a system
• Check your Entity-Relationship Diagram for correctness
• Avoid typical ‘traps’ of poor ER modelling practice

Slide 124

What’s next?

In the next topic, we continue our coverage of the database design

process by looking at logical design, and how to convert a conceptual

model in an ERD to a logical design in a set of normalised tables.

